X

gitam.edu GAT 2015 Syllabus GITAM Admission Test : Engineering, Architecture & Pharmacy

Organisation : GITAM University
Announcement : Syllabus
Admission Test : GAT-2015 GITAM Admission Test Engineering, Architecture & Pharmacy Programs (2015-16)

Syllabus : gitam.edu/Admissions/Download_Engg.aspx
Home Page : https://www.gitam.edu/

GAT-2015 ( GITAM Admission Test ) :

Syllabus for GAT(UGTP / PGP)2015 Online Examinations
Mathematics https://www.entrance.net.in/uploads/528-Mathematics_2015.pdf
Chemistry https://www.entrance.net.in/uploads/528-Chemistry_2015.pdf
Physics https://www.entrance.net.in/uploads/528-Physics_2015.pdf
Biology https://www.entrance.net.in/uploads/528-Biology_2015.pdf
M.Pharmacy https://www.entrance.net.in/uploads/528-M_Pharmacy_2015.pdf

Syllabus – Physics
SECTION – B: PHYSICS

UNIT – 1
1. UNITS AND DIMENSIONS :Units for fundamental and derived quantities; Systems of Units; SI system of units – rules for writing unit, derived units, multiple units and sub multiple units in SI system; Measurement for quantitative study, Accuracy and precision of measuring instruments; Errors due to external causes – constant type, systematic type and environmental type; Errors due to imperfections in experimental techniques/procedure/personal/observation – random errors, gross errors, absolute errors, mean absolute error and relative error percentage error; errors due to addition, subtraction, multiplication division and powers of observed quantities; Significant figures, Dimensions of physical quantities, dimensional formulae, applications and limitations of dimensional analysis.

2. ELEMENTS OF VECTORS: Classification of physical quantities as vectors and scalars Geometrical representation of vectors – Addition and subtraction of vectors. Laws of addition of vectors – Equal and null vectors. Unit vectors – Unit vectors in Cartesian co-ordinate system – position vector and its magnitude. Parallelogram law of vectors – Expression for the resultant vector. Triangle law and polygon law of vectors – concept of relative velocity- application to relative motion of a boat in a river. Multiplication of a vector with a scalar – Scalar product with examples of work and energy – Vector product with examples of torque and angular momentum – Vector and Scalar product of unit vectors.

UNIT – 2
1. KINEMATICS : Force and Inertia, Newton’s Law of Motion, Momentum, Impulse. Concept of resultant force, equilibrium of concurrent forces. Force of Friction, Types of friction, Types of Coefficient of friction. Angle of friction, Angle of repose. Motion of a body on a smooth and rough horizontal surface. Motion of a body on a smooth and rough inclined plane. Law of Conservation of Linear momentum and its applications. Motion in a straight line, speed and velocity. Uniform non uniform motion, average speed and instantaneous velocity, Uniformly accelerated motion. Position-time graph, Velocity-time graph, Acceleration-time graphs relation for uniformly accelerated motion. Motion of freely falling body, Vertically projected body. Projectile motion.

2. WORK-POWER-ENERGY: Work done by a constant force and a variable force. Power, Types of Energies: Mechanical Energy, Potential energy and Kinetic energy. Work energy theorem. Conservative and Non-Conservative forces. Conservation of Mechanical energy. Potential energy of a spring.

UNIT – 3
1. CENTRE OF MASS: Introduction, Centre of mass, difference between centre of mass and centre of gravity. Co-ordinates of centre of mass. Centre of mass of particles along a line, center of mass of system of particles in a plane, center of mass of system of particles in space. Centre of mass of rigid body with homogenous distribution of mass of a thin rod, circular ring, disc and sphere. Motion of centre of mass (Velocity and acceleration of center of mass) characteristics of centre of mass, laws of motion of the centre of mass, velocity and acceleration. Explosion – motion of the centre of mass of earth – moon system

2. COLLISIONS: Introduction – Elastic and inelastic collisions. Collisions in one dimension (elastic and inelastic) body at rest, bodies moving in same direction and opposite directions. Co- efficient of restitution definition. Equation for height attained for freely falling body after number of rebounds on floor. Two dimensional collision.

UNIT – 4
1. ROTATORY MOTION: Introduction, uniform circular motion, concept of angular displacement, angular velocity and angular acceleration, relation between linear velocity and angular velocity, centripetal acceleration and Centripetal force, torque, couple. Moment of Inertia: Perpendicular axis theorem. Parallel axis theorem. MI of a thin rod, uniform disc, rectangular lamina, solid and hollow spheres, circular ring and cylinder. Angular Momentum: Relation between angular momentum and torque, law of conservation of angular momentum with examples. Motion in vertical circle.
Rolling without shipping and toppling.

2. GRAVITATION: Basic forces in nature; The Universal law of gravitation; Nature of gravity; Relation between Universal gravitational constant (G) and acceleration due to gravity(g); variation of “g” with altitude, depth, latitude and shape of earth; Limitations of Newton’s third Law. Idea of inertial and non-inertial frames – Inertial and gravitational masses – Gravitational Potential and Gravitational Potential Energy. Escape velocity, orbital velocity and relation between them – Geo stationary Satellites, their uses.

UNIT – 5
1. ELASTICITY: Elasticity & Plasticity – Stress and Strain – Hooke’s Law, Moduli of elasticity (Y, n, K) – Poission’s ratio – definition and its limit; behaviour of wire under gradually increasing load – elastic fatigue, strain Energy.

2. SURFACE TENSION: Surface tension – definition and applications, Molecular theory of surface tension, surface energy. Angle of contact, Capillarity Determination of surface tension by capillary rise method – theory and experiment. Effect of temperature on surface tension, Excess pressure in liquid drops and soap bubbles.

3. FLUID MECHANICS: Introduction, Principle of Buoyancy, pressure due to fluid column. Pascal’s Law and its applications. Stream line flow, Turbulent Flow, Reynolds number, Bernoulli’s theorem. Applications- aerodynamic lift, motion of a spinning ball. Viscosity, coefficient of viscosity, effect of temperature on viscosity, Poiseuille’s equation. Motion of objects through fluids, Stoke’s law, terminal velocity.

UNIT – 6
1. THERMAL PROPERTIES OF MATTER: Temperature and heat, measurement of temperature. Thermal expansion of solids, liquids and gases. Specific heat capacity, Colorimetry, change of state, latent heat, Triple point. Heat transfer, Conduction, Convection and Radiation. Black body radiation, Stefan’s Law, Wien’s Displacement Law, Newton’s Law of Cooling.

2. THERMODYNAMICS: Thermal Equilibrium, Zeroth Law of thermodynamics. Heat internal energy and work. First law of thermodynamics. Thermodynamic processes – Isothermal, Adiabatic, Isobaric, Isochoric, Quasi static processes. Second law of thermodynamics; Reversible and Irreversible processes. Carnot engine and refrigerator.

3. KINETIC THEORY OF GASES: Gas Laws, ideal gas equation, Kinetic theory of gases – assumptions, pressure of an ideal gas. Kinetic interpretation of temperature, RMS speed of a gas molecule. Degree of Freedom, Law of equipartition of energy. Specific heats of gases. Mean free path, Avogadro’s number.

UNIT – 7
1. SIMPLE HARMONIC MOTION: Periodic motion – Period, Frequency, Displacement as a function of time. Periodic functions. Simple harmonic motion and its equations, phase. Oscillations of simple pendulum, Oscillations of a spring – Restoring force and force constant. Energy in S.H.M – Kinetic and potential energies. Free, forced and damped oscillations, resonance.

2. WAVE MOTION: Longitudinal and transverse waves, Equation for a progressive wave, principle of superposition of waves, reflection of waves. Formation of stationary waves on a stretched string. 3. SOUND: Characteristics of sound – speed of sound in solids, liquids and gases Standing waves in Organ Pipes – Open Pipes, Closed Pipes, Fundamental frequency, Overtones, Harmonics, Beats. Doppler Effect: Applications and limitations of Doppler Effect. Echoes.

UNIT – 8
1. RAY OPTICS AND OPTICAL INSTRUMENTS: Reflection of light, Reflection of light at plane and spherical surfaces, mirror formula. Reflection of light, Snell’s Law, Total internal reflection. Lens formula, Magnification power of a lens, Combination of lenses, Culling of a lens, Silvering of a lens. Refraction through a prism. Microscope and astronomical telescope and their magnifying powers.

2. WAVE OPTICS: Huygens Principle and wavefront. Law of reflection and refraction using Huygens principle. Interference of light, Young’s double slit experiment, Fringe width. Diffraction of light, Diffraction due to a single slit, Width of central maxima. Resolving power of a microscope and telescope. Polarization of light, Plane of polarized light. Brewster’s law. Polaroids and their uses.

Categories: GAT
Tags: gitam.edu
Muthukalee:
www.entrance.net.in © 2021 Contact Us   Privacy Policy   Site Map